

# SSCM1316AFA Synchronous Step-Down DC/DC Converter

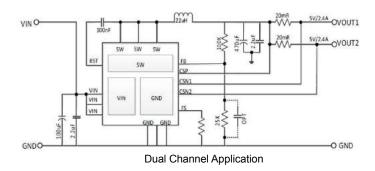
#### **Features**

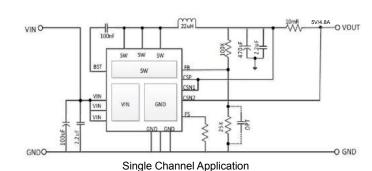
- Wide VIN Range: 7V to 38V
- 6A Continuous Output Current
- Up to 95% Efficiency @ 24V Input
- Dual-Channel CC/CV Mode Control
- Adjustable Output Voltages
- ±2% Output Voltage Accuracy
- ± 6% Current Limit Accuracy
- Integrated 14mΩ High Side MOSFET
- Integrated 14mΩ Low Side MOSFET
- Programable Frequency(130KHz~300KHz)
- Burst Mode Operation at Light Load
- Internal Loop Compensation
- Internal Soft Start
- Thermally Enhanced QFN5\*5 Package

# Package



Mechanical package: QFN5\*5-20, (see "Ordering information" for details)


### **Applications**


- Car Charger
- Rechargeable Portable Devices
- Networking Systems
- Distributed Power Systems

#### **Functional**

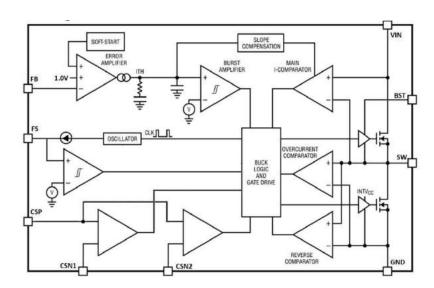
SSCM1316AFA is a high efficiency, monolithic synchronous step-down DC/DC converter utilizing a jitter frequency, average current mode control architecture. Capable of delivering up to 6A continuous load with excellent line and load regulation. The device operates from an input voltage range of 7V to 38V and provides an adjustable output voltage from 3.3V to 25V. The SSCM1316AFA features short circuit and thermal protection circuits to increase system reliability. The internal soft-start avoids input inrush current during start-up. The SSCM1316AFA require a minimum number of external components. and a wide array of protection features to enhance reliability.

### Typical Application Circuit





### **CONTENTS**


| 1 | Hom   | ne                                        | ·                       |
|---|-------|-------------------------------------------|-------------------------|
|   | 1.1   | Features & Package                        |                         |
|   | 1.2   | Applications                              | · · · · · · · · · · · · |
|   | 1.3   | Functional                                |                         |
|   |       | Typical Application Circuit               |                         |
| 2 | Pin ( | Connection & descriptions(Internal Block) | 2                       |
| 3 |       | arameters                                 |                         |
|   | 3.1   | Absolute Maximum Ratings                  |                         |
|   | 3.2   | Recommended Operating Conditions          |                         |
|   |       | Electrical Characteristics                |                         |
|   | 3.4   | Thermal Resistance                        | 3                       |

| 4 |
|---|
| 6 |
| 6 |
| 6 |
| 6 |
| 6 |
| 7 |
| 7 |
| 8 |
| 8 |
|   |

# Pin Connection

### [17] [19] [18] 16 20 15 PAD1 PAD3 4 PAD2 11 [5] (9) [10] 38)

## Internal Block



# Pin Descriptions

| Pin No.       | Name | Description                                       |  |  |
|---------------|------|---------------------------------------------------|--|--|
| 1,2,3,PAD1    | GND  | Ground                                            |  |  |
| 4,5           | NC   | Not Connected                                     |  |  |
| 6,7,8,PAD2    | VIN  | Power Input Positive Pole                         |  |  |
| 9             | NC   | Not Connected                                     |  |  |
| 10            | BST  | Boot Strap                                        |  |  |
| 11            | NC   | Not Connected                                     |  |  |
| 12,13,14,PAD3 | SW   | Switching, Connected With a Inductance            |  |  |
| 15            | NC   | Not Connected                                     |  |  |
| 16            | VFB  | Feedback Of Output Voltage                        |  |  |
| 17            | CSP  | Positive Pole of Current Sense                    |  |  |
| 18            | CSN1 | Negative Pole1 of Current Sense                   |  |  |
| 19            | CSN2 | Negative Pole2 of Current Sense                   |  |  |
| 20            | FS   | Connect a Resistor to GND for Frequency Configure |  |  |

# Absolute Maximum Ratings TA=25°C, unless otherwise noted.

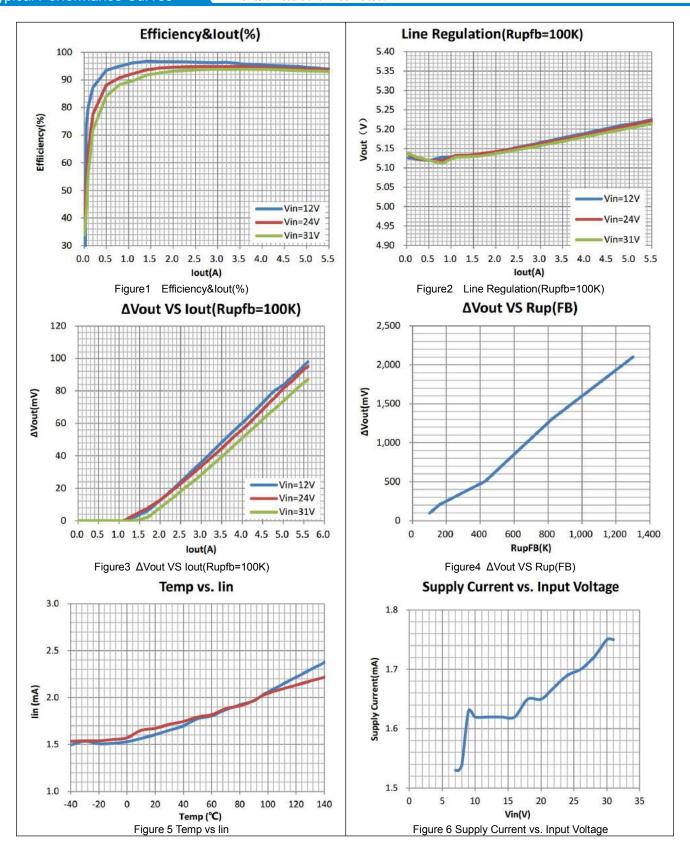
| Parameter     | SYMBOL | Min  | Max     | UNIT |
|---------------|--------|------|---------|------|
| VIN to GND    |        | -0.3 | 42      | V    |
| SW to GND     |        | -0.3 | Vin+0.3 | V    |
| BST to GND    |        | -0.3 | Vin+7   | V    |
| FB, FS to GND |        | -0.3 | +6      | V    |

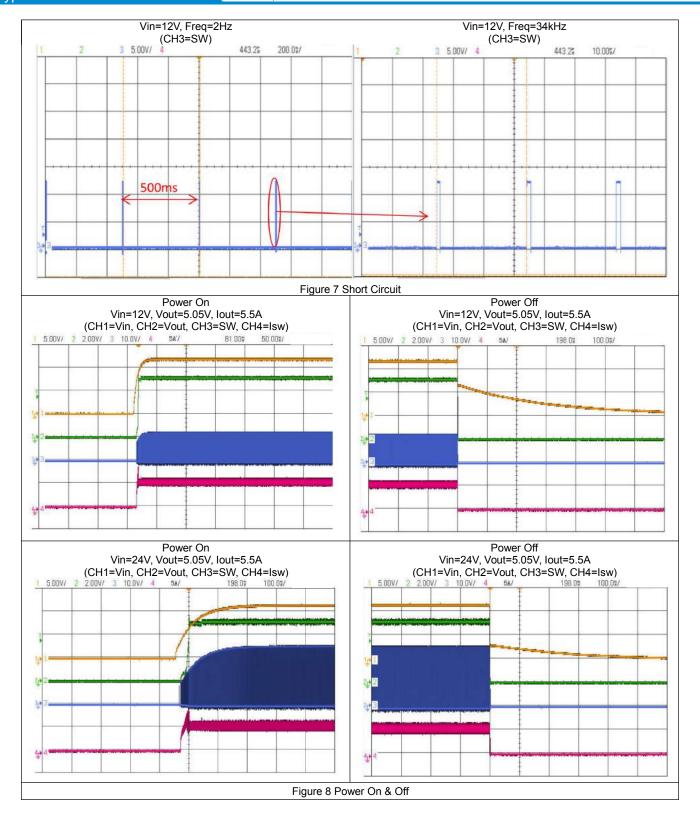
| CSP, CSN1, CSN2 to GND                      |     | -0.3 | 25  | V    |
|---------------------------------------------|-----|------|-----|------|
| Operating Junction Temperature              |     | -40  | 150 | ℃    |
| Storage Junction Temperature                |     | -55  | 150 | °C   |
| Thermal Resistance from Junction to case    | θις | 1    | 5   | °C/W |
| Thermal Resistance from Junction to ambient | Өда | 4    | .0  | °C/W |

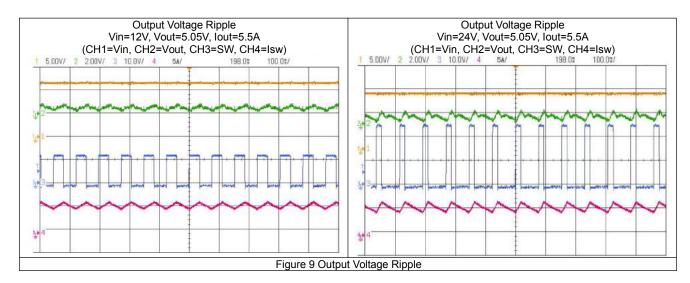
#### Notes:

Stresses at or above those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress rating only:functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Operation beyond the maximum operating conditions for extended periods may Affect product reliability.

### Recommended Operating Conditions


| Parameter            | Symbol           | Min | Max  | Unit       |
|----------------------|------------------|-----|------|------------|
| Input Voltage        | V <sub>VIN</sub> | 7   | 38   | V          |
| Output Current       | lo               |     | 6000 | mA         |
| Junction Temperature | TJ               | -40 | 150  | $^{\circ}$ |


## **Electrical Characteristics**


| Symbol           | Parameter                        | Test Conditions       | Min   | Тур  | Max   | Unit |
|------------------|----------------------------------|-----------------------|-------|------|-------|------|
| $V_{in}$         | Input Voltage                    |                       | 7     | -    | 38    | V    |
| $V_{\sf UVLO}$   | UVLO Voltage                     |                       | -     | 6.2  | 7     | V    |
| V <sub>hys</sub> | UVLO Hysteresis                  |                       | -     | 0.8  | -     | V    |
| Vovp             | Input over voltage protect       |                       | 38    | -    | -     | V    |
| Iccq             | Quiescent Current                | VFB = 1.2V, no switch | -     | 1300 | -     | uA   |
| I <sub>SB</sub>  | Standby Current                  | No Load               | -     | 1.7  | 2.2   | mA   |
| V <sub>FB</sub>  | FB Reference Voltage             |                       | 0.985 | 1    | 1.015 | V    |
| lfв              | V <sub>FB</sub> bias Current     |                       | -     | -    | 0.2   | Α    |
| Vcs1             | Coment Conso AMD                 | CSP-CSN1              | 57    | 60   | 63    | mV   |
| Vcs2             | Current Sense AMP                | CSP-CSN2              | 57    | 60   | 63    | mV   |
|                  | Cuitohing Fraguency              | FS Floating           | -     | 130  | -     | KHz  |
| Fsw              | Switching Frequency              | connect 150K resister | -     | 300  | -     | KHz  |
| VFSEN            | FS Shut down                     |                       | -     | 0.6  | -     | V    |
| D <sub>max</sub> | Maximum Duty Cycle               |                       | -     | 98   | -     | %    |
| Ton-min          | Minimum On-Time                  |                       | -     | 250  | -     | ns   |
| Інм              | Current Limit                    |                       | 8     | -    | -     | Α    |
| VFBscp           | Output short protect             |                       | -     | 0.6  | -     | V    |
| T hiccup         | Hiccup Interval                  | FS Floating           | -     | 500  | -     | ms   |
| Tss              | Soft start Time                  |                       | -     | 2    | -     | ms   |
| High side        | R <sub>DS(ON)</sub> Of Power MOS | Tomp=25°C             | -     | -    | 14    | mΩ   |
| Low side         | NDS(ON) OF POWER MICS            | Temp=25°C             | -     | -    | 14    | mΩ   |
| T <sub>TR</sub>  | Thermal Regulation               |                       | -     | 145  | -     | °C   |
| Tsp              | Thermal shutdown Temp            |                       | -     | 165  | -     | ℃    |
| Тѕн              | Thermal Shutdown<br>Hysteresis   |                       | -     | 30   | -     | ℃    |

# Thermal Resistance

| Characteristics                             | Symbol       | Rating | Unit |
|---------------------------------------------|--------------|--------|------|
| Thermal Resistance from Junction to case    | θις          | 15     | °C/W |
| Thermal Resistance from Junction to ambient | $	heta_{JA}$ | 40     | °C/W |







### Operation

The SSCM1316AFA is a high efficiency, monolithic, synchronous step-down DC/DC converter utilizing a Jitter frequency, average current mode control architecture. Average current mode control enables fast and precise control of the output current. It operates through a wide VIN range and regulates with low quiescent current. An error amplifier compares the output voltage with a internal reference voltage of 1.0V and adjusts the peak inductor current accordingly. Over-voltage and under-voltage comparators will turn off the regulator.

#### Main Control Loop

During normal operation, the internal top power switch (N-channel MOSFET) is turned on at the beginning of each clock cycle, causing the inductor current to increase. The sensed inductor current is then delivered to the average current amplifier, whose output is compared with a saw-tooth ramp. When the voltage exceeds the v-duty voltage, the PWM comparator trips and turns off the top power MOSFET. After the top power MOSFET turns off, the synchronous power switch (N-channel MOSFET) turns on, causing the inductor current to decrease. The bottom switch stays on until the beginning of the next clock cycle, unless the reverse current limit is reached and the reverse current comparator trips. In closed-loop operation, the average current amplifier creates an average current loop that forces the average sensed current signal to be equal to the internal ITH voltage. Note that the DC gain and compensation of this average current loop is automatically adjusted to maintain an optimum current-loop response. The error amplifier adjusts the ITH voltage by comparing the divided-down output voltage (VFB) with a 1.0V reference voltage. If the load current changes, the error amplifier adjusts the average inductor current as needed to keep the output voltage in regulation.

#### Low Current operation

The discontinuous-conduction modes (DCM) are available to control the operation of the SSCM1316AFA at low currents. Burst Mode operation automatically switch from continuous operation to the Burst Mode operation when the load current is low.

### VIN Over-voltage Protection

In order to protect the internal power MOSFET devices against transient voltage spikes, the SSCM1316AFA constantly monitors the VIN pin for an over-voltage condition. When VIN rises above 38V, the regulator suspends operation by shutting off both power MOSFETS. Once VIN drops below 37V, the regulator immediately resumes normal operation. The regulator executes its soft-start function when exiting an over-voltage condition.

### Frequency Selection and Shutdown

The switching frequency of the SSCM1316AFA can be programmed through an external resistor between 130kHz and 300 kHz, Floating this pin set the switching frequency to 130KHz, an external resistor can set the frequency up to 300KHz. The switching frequency is set using the FS pins as shown in Table 1:

| FS Resistor(KΩ) | Frequency(KHz) |
|-----------------|----------------|
| Floating        | 130K           |
| 1000            | 140K           |
| 750             | 160K           |
| 510             | 170K           |
| 300             | 210K           |

| 200 | 255K |
|-----|------|
| 150 | 300K |

T bal elF requency&FSR eists or

When the FS pin is below 0.6V, the SSCM13116AFA enters a low current shutdown state, reducing the DC supply current to 1.3mA.

### Application Information

#### Input Capacitor (CIN) Selection:

To prevent large voltage transients from occurring, a low ESR input capacitor sized for the maximum RMS current should be used. The maximum RMS current is given by:

$$I_{RMS} = I_{OUT(MAX)} \frac{V_{OUT}}{V_{IN}} \sqrt{\frac{V_{IN}}{V_{OUT}}} - 1$$

This formula has a maximum at VIN = 2VOUT, where: IRMS ≅ IOUT/2. Several capacitors may also be paralleled to meet size or height requirements in the design. For low input voltage applications, sufficient bulk input capacitance is needed to minimize transient effects during output load changes.

#### **Output Capacitor (COUT) Selection:**

The output ripple, \(^VOUT\), is determined by:

$$\triangle V_{OUT} < \triangle I_L (\frac{1}{8 \bullet f \bullet C_{OUT}} + ESR)$$

The output ripple is highest at maximum input voltage since AIL increases with input voltage.

#### **Inductor Selection:**

Given the desired input and output voltages, the inductor value and operating frequency determine the ripple current:

$$\triangle I_L = \frac{V_{OUT}}{\mathbf{f} \bullet L} (1 - \frac{V_{OUT}}{V_{IN(MAX)}})$$

Lower ripple current reduces power losses in the inductor, ESR losses in the output capacitors and output voltage ripple. Highest efficiency operation is obtained at low frequency with small ripple current. However, achieving this requires a large inductor, There is a trade-off between component size, efficiency and operating frequency, The choice of which style inductor to use mainly depends on the price versus size requirements and any radiated choose a ripple current that is about 40% of IOUT(MAX). To guarantee that ripple current does not exceed a specified maximum, the inductance should be chosen according to:

$$L = \frac{V_{OUT}}{\mathbf{f} \bullet \triangle \mathbf{I}_{L (MAX)}} (1 - \frac{V_{OUT}}{V_{IN(MAX)}})$$

#### EMI/EMC:

In order to solve EMI electromagnetic interference, SW pin should add a circuit of RC filter, a 20Ω resistor and a 1nF capacitor, BST pin reserved 20

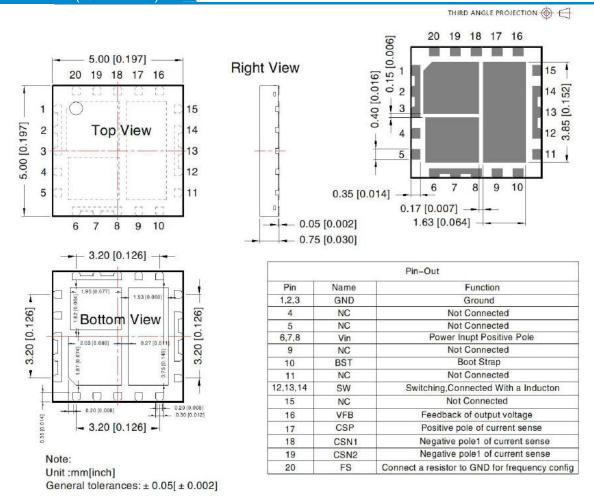
## Ordering Information

| Part number | Package   | Number of pins | Product Marking | Tape&Reel |
|-------------|-----------|----------------|-----------------|-----------|
| SSCM1316AFA | QFN5*5-20 | 20             | SSCM1316AFA YM  | 4K/REEL   |

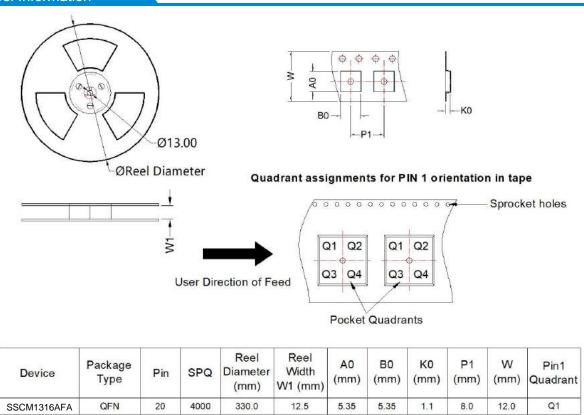
Product marking and date code

SSCM1316XYZ

(1)SSCM1316=Product designation


(2)X=Version code information(A-Z)

(3)Y=Packaging definition code; F for QFN package.


(4)Z=Operating temperature range; C : 0°C to +70°C, I : -40°C to +85°C, A : -40°C to +125°C, M : -55°C to +125°C.

 $\Omega$  string 100nF.If the application version enough volume, can be reserved at input end type  $\Pi$  circuit.

(5)YM=Date code for product trace ability; Y=code for production year; M=code for production month.



### Tape & Reel Information

